Glass fission track analysis by AFM and SEM: Inferring latent track structure through etched tracks

J.C. Hadler¹, I. Alencar¹, P.J. Iunes¹, S. Guedes²

 ¹ Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-970, Campinas - SP, Brazil.
 ² Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, UNIFESP, Rua Professor Artur Riedel 275, 09972-270 Diadema, SP, Brazil.

september 2008

Latent track:

A damage trail (lattice defects) caused by charged particles traversing dieletric materials.

・ロト ・回ト ・ヨト

Goals:

- To study the glass latent track structure through etched tracks;
- To observe the glass fission track structure evolution by a chemical etching.

・ロト ・日ト ・ヨト ・ヨト

To observe a track, a chemical etching is required to enlarge the damage trail.

Bulk etching rate V_B :

The rate in which the bulk material is dissolved.

Track etching rate V_T :

The rate in which the damaged region along the track is dissolved.

Response function V:

$$V \equiv \frac{V_T}{V_B}$$

イロト イポト イヨト イヨト

Assumptions: isotropic material and constant V_T .

Somogyi & Szalay (1973) Nucl. Instr. and Meth. 109, 211.

・ 回 ト ・ ヨ ト ・ ヨ ト

Sample:

A soda-lime glass detector is coupled to an U film through an acrylic piece (collimator). Irradiated by thermal neutrons ($\phi = 1.0 \times 10^{14} \text{ cm}^{-2}$) the film emit fission fragments.

Using software $S\!RI\!M$ the fission fragments energy loss were simulated.

Light fragment (niobium):				
Film thickness	Film loss	Air loss	Incidence energy	
$0.053~\mu{ m m}$	0.63 MeV	32.30 MeV	69.07 MeV	
0.49 μ m	5.78 MeV	31.92 MeV	64.03 MeV	
0.93 $\mu{ m m}$	10.97 MeV	31.53 MeV	59.50 MeV	

Heavy fragment (lanthanum):				
Film thickness	Film loss	Air loss	Incidence energy	
0.053 μ m	0.57 MeV	30.99 MeV	38.44 MeV	
0.49 μ m	5.25 MeV	30.09 MeV	34.66 MeV	
0.93 μ m	9.97 MeV	29.19 MeV	30.84 MeV	

イロン イヨン イヨン

Chemical etching: HF 20% 15° C. The standard etching observed was 30s.

J.C.Hadler Inferring Glass Latent Track Structure

V_B measurement:

Part of the glass surface was recovered with *AZ 30 12 Photo Resist* during the chemical etch. The steps were measured with a Profilometer (soft touch).

SEM measurements:

At vacuum (7×10^{-2} mbar) a thin carbon layer is deposited upon the glass sample to avoid charging.

10s

20s

30s

The white bar on the top of each image is the scale ($20\mu m$).

Although the incidence energy of light and heavy fragments is different this cannot be observed in track diameter distribution.

Track diameter was measured with the software Image Tool.

AFM measurements:

Track diameter and complementary of cone angle were measured in different etching times (non-contact mode).

Depths were calculated with track cone angles and diameters. Dividing these depths by the etching times track etching rates V_T were obtained.

Response function V calculation:

- By track diameter and geometric model: $V = 1.66 \pm 0.07$;
- By V_T rate calculated by depth: $V = 1.31 \pm 0.09$;

We believe that this difference is caused by limitations related to the AFM cantilever tip size [Nikezic et al. (2002) *Nucl. Instr. and Meth.* **B197**, 293].

ヘロン ヘロン ヘビン ヘビン

Conclusions:

- Track diameters measured with SEM and AFM techniques agree;
- Bulk and track etching rates measurements yield constant values.

Thus, the effect produced by fission fragments traversing a soda-lime glass is the production of a homogeneus cylinder of damage.

< ロ > < 同 > < 三 > < 三 >