

Monte Carlo simulations to investigate the alpha absorption in the fibers of radioactive aerosol filters

Tony GERYES

PhD. student, University of Paris XII

Institute for Radiological protection and Nuclear Safety

IRS[N]/DSU/SERAC/LPMA

Plan

- Introduction
- **Difficulties for accurate nuclear measurements**
- Quantitative study of the α energy degradation in different filter types and determination of experimental correction factors of the activity measurements inside fiber filters
- **MCNPX** simulation for α-particles
- Preliminary study with MCNPX of a simple solid source
- **Fiber filter simulation studies with MCNPX**
- Determination of simulated correction factors of the activity in fiber filters
- Comparison MCNPX Vs experimental spectroscopy
- Conclusion and perspectives

Introduction

Determination of the deposited activity inside fiber filters upon environmental contamination monitoring near nuclear facilities

Industry

Health risks

3/15

Natural atmospheric contamination or industrial contamination

Contamination by inhalation of radioactive aerosols

Fast and non-destructive measurements of the a activity deposited as radioactive aerosols in fiber filters which are usually used in French nuclear industry

Influent parameters to be evaluated in order to have accurate nuclear measurements

Incidence on the radioactivity measurement into a filter

Experiments and Monte Carlo simulations to find Correction factors

T. GERYES

24th ICNTS - Bologna - September 08

Experimental study of the α energy degradation in different filters

Determination of experimental correction factors of the activity inside fiber filters

The activity in the filter is measured successively with PIPS detector, proportional counter and liquid scintillation (L.S.) technique \rightarrow Correction factors Fc

Long, non-exhaustive experiments and destructive way to measure the correction factors of absorbed α -particles in filter fibers

IRSN

Simulation of α -particles in fiber filters \rightarrow calculated correction factors with MCNPX

Preliminary study with MCNPX of the detection efficiency of a PIPS detector for a simple source - simulation Vs experiment comparisons

Validation of α -particle simulation

- Verification of the model feasibility with a solid source
- Calculation of the detection efficiency for a PIPS detector geometry
- Comparison between experimental and simulated detection efficiencies

8/15

T. GERYES

24th ICNTS - Bologna - September 08

MCNPX simulations of a C357 fiber filter

Determination of the correction factor of activity measurements inside a fiber filter

Number of total events = reference activity measurement over 4π total measurement in the L.S.

Experimental and simulated determination of the correction factors of the activity in different fiber filters

IRSI

11/15

Conclusion

- Quantitative experimental study of the α energy degradation in fiber filters
- Determination of experimental correction factors of the activity in a fiberglass filter
- Solution α -particle physic models
- Simulation of a C357 fiber filter with aerosol penetration found in filtration software
- Calculated correction factors of the activity in a fiber filter

Perspectives

- Pursuit of experiments and simulations in order to study the effect of accumulated masses on the filter and then the clogging of filters on the measurement of radioactivity inside filters
- Global simulation of the aerosol penetration and the α energy degradation in fiber filters with models of filtration and Monte Carlo software

Thank you for your attention...

tony.geryes-doctorant@irsn.fr

T. GERYES

24th ICNTS - Bologna - September 08

