

Experimental study of the electric charge of a radioactive nanometric aerosol

R. Abou-Khalil^(1,2) - S. Della-Negra⁽³⁾ - N. Michielsen⁽¹⁾

A. Nourreddine⁽²⁾ - E. Baussan⁽²⁾

(1)- IRSN/DSU/SERAC/LPMA
(2)- IPHC/DRS/RaMsEs – Université Louis Pasteur Strasbourg I
(3)- Institut de Physique Nucléaire d'Orsay (IPNO)

24th International Conference on Nuclear Tracks in Solids Bologna – September 1-5, 2008

- Research goals
- Introduction
- Experimental setup
- Time-of-Flight measurements
- Results and discussion
- Conclusions and perspectives

Research goals

3/19

Research goals

<u>Context</u>

The behavior of radioactive aerosols (radon's progeny) in a medium depends on:

Cohen *et al.* (1998) show the effect of the particles' charge on their deposition in the breathing apparatus. Their results show a deposition from 5 to 6 times greater, for 20 and 125 nm charged particles, than for neutral particles of the same size.

Deposition on surfaces and sampling systems

R. ABOU-KHALIL - ICNTS 2008

Health consequences

IRSN

4/19

- Deposition in dwellings
- Deposition in the breathing apparatus

Introduction

Decay chain of Radon and its progeny

Literature review

The electric charge of radon progeny has two forms: total charge fraction and charge distribution

Pierre & Marie Curie 1904, were the first to measure the electric charge of radon's progeny

<u>Wellisch 1913, was the first to</u> <u>measure the total charge fraction</u> <u>of ²¹⁸Po using a Zeleny Tube:</u>

All results in the literature concerning radon's progeny treated the total charge fraction, but none of them studied its charge distribution state.

R. ABOU-KHALIL - ICNTS 2008

IRSN

8/19

Experimental setup

ACCELERATION CHAMBER

• PA: Preamplifier

CFD: Constant Fraction Discriminator

• MCP: Micro Channel Plates

TDC: Time Digital Converter

IRSN

10/19

Time-of-Flight measurement

• Time-of-Flight of ²¹⁸Po before its detection by the Micro Channel Plates is:

$$T = T_a + T_L$$

- T_a : Time-of-Flight in the accelerator chamber 10 mm (10⁻⁸ s)
- T_L : Time-of-Flight between the accelerator chamber and the MCP 46 cm (>10⁻⁷ s)
- Velocity and kinetic energy of the recoiling ions $^{218}Po^{q}$ while applying a differential potential ΔU in the acceleration chamber:

$$V_q = \gamma T_a + V_r$$
 $E = q\Delta U + E_r$

 γ : Acceleration of ²¹⁸Po due to the differential potential V_r and E_r: Velocity and energy recoil of ²¹⁸Po

Velocity V_a is constant for all the L distance, this implicates that:

RAMSES

IRSN

11/19

M: atomic mass unit of ²¹⁸Po

Results and discussion

Time-of-Flight measurement obtained without differential potential to define the recoiling ²¹⁸Po ions spectrum

RAMSES

IRSN

13/19

Time-of-Flight spectra for secondary and recoiling ions

- Time-of-Flight spectra show small differences, which reveal the neutral and singly positive charged states of recoiling ions
- No multi-charged ions greater than +10 appear, otherwise they would have been located between H and C peaks

🐔 Ramses

IRSN

14/19

Time-of-Flight spectra for secondary ions for two different ²²⁶Ra sources

The secondary ion emission for both sets of measurements differ by the presence or not of barium in the source solution; the second set lacks the barium peak because the decrease of the concentration in the solution

Time-of-Flight spectra for secondary and recoiling ions

Conclusions and perspectives

<u>Conclusion and Perspectives</u>

✓ These results show, for the first time, the charge distribution state of a radon progeny (218 Po): 74% neutral, 20% singly charged, 6% multicharged (with a maximum +10 and an average +5), they confirm the decay of 218 Po to the ground state

✓ These results show how the energy loss (10 - 100 keV) in the matter emits a high secondary ions yield and how it neutralizes recoiling ions

✓ Otherwise, we can notice the large influence of the matter (barium) and the medium surrounding the emitting source

✓ We must mention as well that our results can not be compared to those of the literature (88% of ²¹⁸Po positively charged, Wellisch) as we measured the charge distribution in the vacuum and not in the ambient air (Wellisch)

✓ These data are interesting because they show several ways of matter's ionization, and will help investigations on the electric charge of radioactive element attached to nanometric aerosols

Experimental study of the electric charge of a radioactive nanometric aerosol

R. Abou-Khalil - S. Della-Negra - N. Michielsen A. Nourreddine - E. Baussan

24th International Conference on Nuclear Tracks in Solids Bologna – September 1-5, 2008

Thank You!

🔏 Ramses