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Standard Model of Electroweak and Strong Interactions
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2. Electroweak fits

mH<154 GeV

(Verzocchi ICHEP08)
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Running of the coupling constants
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The Standard Model (Electroweak+QCD)

The only missing basic ingredient in the SM is the Higgs.
LHC may answer the following questions:
Is there a Higgs? What is its mass?
Is the Higgs a weak doublet? Is it elementary or composite?

Physics beyond the SM
-There are many th reasons to search for physics beyond the SM
  (Infinities, SUSY, Dark Matter, Extra Dimensions, ….)

-Are ν oscillations hints of new physics?

Precision EW measurements + Tests of SM at LEP, FNAL, SLAC,
HERA failed to find discrepancies : the SM is well off.

QCD is the established theory of Strong Interactions.
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3. LHC
   +CERN accelerators
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The CMS detector at the LHC
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4. Neutrinos.  Neutrino sources
+ geo-antineutrinos
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 ν  Oscillations (in vacuum)
   Weak flavor eigenstates νe, νµ, ντ
    Mass eigenstates ν1, ν2, ν3
   Decays, Interactions π+ → µ+ νµ , νµ n → µ- p
   Propagation ν1(t) = ν1(0) e -Et

   Mixing νf = Σ3
m=1 Ufm νm

   Flavor ν propagate as a superposition of mass eigenstates
   If only 2 flavors  (νµ, ντ) , (ν2, ν3) :
Oscillation probability (appearance) over a distance L:

P(νµ → ντ) = sin2 2θ23 sin2 (1.27 Δm2
23 L/Eν)

    Disappearance over a distance L:
P(νµ  νµ) = 1 - P(νµ  ντ)

Simple formulae modified by : Additional flavor oscillations
    Matter effects

In case of oscillations:  mν ≠0 ,  Δmν< 0.1 eV
    Le, Lµ, Lτ violation , L=Le+Lμ+Lτ conserved?
    Neutrino decays ?   Lorentz invariance ?
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3 neutrino mixing           (RZK-ν08)
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Mass scales and hierarchies
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Mixing matrix
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p, He, Fe …

µ
µ

νµ

νµ

5. Atmospheric neutrinos

Eν: 0.1 GeV → 100 GeV
L: 20 km → 13000 km 
L/Eν:  1 km/GeV → 105 km/GeV 

Downgoing νµ: “near” neutrino source
Upgoing νµ:      “far”  neutrino source

p, He, Fe …

νµ

νµ
νe

µ
π

e
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Up stop In down

In upUp throughgoing

Absorber

Streamer

Scintillator

  1) 2) 3) 4)

Detector
mass ~
5.3 kton

DATA SAMPLES(measured)
         Bartol96 expected
__________________________

Up through(1)   857
    1169

Internal UP(2)  157
     285

In DOWN(3)+Stop(4) 262
     375

MACRO   (12mx9mx76m)
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Flux reduction depending on zenith
angle for the high energy  events
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From MC: distortion of
the angular distribution

underground detector

Eν ~ 50 GeV
Lν ~ 10 - 104 km

Effects of νµ oscillations on
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Zenith distribution 

MACRO : Final Combined Analysis

Eν estimate 
IU, ID and UGS µ

R1= N(cos Θ < -0.7)/N(cosΘ > -0.4)

R2= N(low Eν) / N(high Eν)

R3= N(ID+UGS) / N(IU)

{H.E.

NO OSCILLATION HYPOTHESIS
RULED OUT BY ~ 5 σ

  Best fit parameters for  νµ  ντ
  Δm23

2 = 2.3 10-3 eV2  ;  sin2 2θ23 =1

L.E.

Predictions of the new FLUKA and Honda Monte Carlos
H.E. 25% low ;  L.E. 12% low

Bartol96 may give additional evidence for oscillations:
Absolute values referred to Bartol96 MC:
               R4=(Data/MC)H.E.    ;    R5=(Data/MC)L.E.

With these informations, the no oscillation hypothesis ruled out by ~6 σ
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Super-Kamiokande

39.3m

41.4m

50kt total volume
22.5kt fiducial volume

         20’PMT  photocathode 
                           coverage 
SK-I   11,146        40%
SK-II    5,182        19%

1000m underground

Mt Ikenoyama
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νµ
SK
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Zenith Angle Distributions (SK-I + SK-II)
νµ–ντ oscillation (best fit)
null oscillation

µ-like

e-like

P<400MeV/c

P>400MeV/c

P<400MeV/c

P>400MeV/c
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6. Long base line experiments
• K2K (KEK to Kamioka)    (250 km)
   Near Detector and Far Detector (SuperK)
   Ratio=measured/expected <1  

• NuMI from Fermilab to Soudan mine (735 km)
  Experiment Minos
  Near Detector (1000 t) , Far Detector (5500 t)
   Ratio=measured/expected < 1     ∆m23

2=2.41 10-3 eV2

   Peanut test experiment

•  CNGS beam from CERN to Gran Sasso (732 km)
   Experiments: Opera: Appearance νµ--> ντ experiment
     LVD monitor, Borexino, Icarus
     Neutrino Beam size at GS : σ about 1 km

Δm23
2=2.7 10-3 eV2
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Time Selection of Beam Events

GPS

TCERN = Time Stamp
SPS extraction

TOPERA = Event
TimeStamp

Tflight = 2.44 msec

TOPERA - (TCERN + Tflight) < ∆TGate 

GPS Time Stamp resolution ~ 100 ns 



SM. Neutrino oscillations 26

CNGS: the main components

vacuum

700 m              100 m                 1000m                       67 m

p + C → interactions  → π+, K+, (µ+) →  decay in flight  → µ++νµ
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NuMI - MINOS

Far detector

Near detector

Far Detector:
Soudan, Minnesota, 735 km from target
5.4 kton mass
484 steel/scintillator planes, 8x8x30 m3

Near Detector:
Fermilab, 1km from target
1 kton mass
282 steel planes
153 scintillator planes, 3.8x4.8x15 m3
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Structure of the OPERA Experiment

31 target planes / supermodule   (in total: 150000 bricks, 1350 tons)

υ

Targets
Magnetic Spectrometers

SM1 SM2
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OPERA Hybrid concept
Target is an assemblage of autonomous cells (“bricks”)
● based on “Emulsion Cloud Chamber” technique
● provides large mass and micron and mrad precisions
● quasi on-line analysis: bricks in which events have occurred are removed
   and analysed on daily base.

Brick
•  56 lead plates interleaved with 57
sheets of nuclear emulsion
•   4″×5″×7.5 cm, 8.3 kg.
•10 X0
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Tracks : series of aligned
segments in emulsion layers
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The same muon in emulsionsA muon in the electronic detectors
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One event seen in 2007
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7. Conclusions. Outlook
Atmospheric neutrino and long baseline favor 2-flavor oscillations

Δm23
2=

Soudan2   5.2 10-3eV2

MACRO    2.3    “
SK         2.5    “
K2K        2.7    “
Minos      2.43   “

More exotic scenarios:
- Lorentz invariance violation : mixing between flavor and velocity
  eigenstates (MACRO, SK,...)
- neutrino radiative decay, others

Oscillation pattern in L/Eν

Appearance experiments νµ    ντ (OPERA, SK, ICARUS,...)

(SK,MINOS)

Δ

θ

No νµνσ  oscillations (MACRO, SK)

Maximal mixing
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Solar neutrinos

Experiments : Homestake, Kamiokande, Sage, Gallex,

                 Superkamiokande, SNO, Kamland, Borexino

  Δm12
2=7.5 10-5 eV2

  tg2θ12=0.47
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… and next

• T2K and Noνa
– “Off-Axis” Trick

Pν,L
GeV/c

Pν,T
GeV/c

0.03

1 2 3 4 5
-0.03


