The Standard Model of Particle Physics. Neutrino Oscillations.

Giorgio Giacomelli University of Bologna and INFN 24th ICNTS, 5 Sept 2008, Bologna, It

- 1. The Standard Model
- 2. Electroweak fits
- 3. LHC
- 4. Neutrinos. Neutrino oscillations
- 5. Atmospheric neutrinos
- 6. Long base line v experiments
- 7. Conclusions. Outlook

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (guantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

F	ERMI	ONS	spin = 1/2, 3/2, 5/2,				
Leptons spin = 1/2			Quarl	ks spin	= 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electrie charge		
Ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3		
e electron	0.000511	-1	d down	0.006	-1/3		
$ u_{\!\mu}^{ m muon}_{ m neutrino}$	<0.0002	0	C charm	1.3	2/3		
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3		
$ u_{\tau}^{tau}_{neutrino}$	<0.02	0	t top	175	2/3		
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3	-1/3		

Spin is the intrinsic angular momentum of particles. Spin is given in units of h, which is the auantum unit of angular momentum, where $\hbar = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05x10⁻³⁴ J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.

The energy unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. **Masses** are given in GeV/c² (remember $E = mc^2$), where 1 GeV = $10^9 \text{ eV} = 1.60 \times 10^{-10}$ joule. The mass of the proton is 0.938 GeV/c² = 1.67×10^{-27} kg.

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.						
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	
р	proton	uud	1	0.938	1/2	
p	anti- proton	ūūd	-1	0.938	1/2	
n	neutron	udd	0	0.940	1/2	
Λ	lambda	uds	0	1.116	1/2	
Ω-	omega	555	-1	1.672	3/2	

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\bar{c}$, but not $K^0 = d\bar{s}$) are their own antiparticles.

Figures

These diagrams are an artist's conception of physical processes. They are not exact and have no meaningful scale. Green shaded areas represent the cloud of gluons or the gluon field, and red lines the quark paths.

PROPERTIES OF THE INTERACTIONS

or

ia a virtual Z boson or a virtual photon

BOSONS force carriers

			(CONTRACT)
Jnified Ele			
Name	Mass GeV/c ²	Electric charge	N
γ photon	0	0	ç
W-	80.4	-1	Colo
W+	80.4	+1	Each "stro
Z ⁰	91.187	0	These

Strong (color) spin = 1						
Name	Mass GeV/c ²	Electric charge				
g gluon	0	0				

Charge

uark carries one of three types of g charge," also called "color charge." charges have nothing to do with the colors of visible light. There are eight possible types of color charge for gluons. Just as electri-

> Mass GeV/c² 0 140 0

0.494 0

0 770 5.279 0

2.980 0

0

cally-charged particles interact by exchanging photons, in strong interactions color-charged par-ticles interact by exchanging gluons. Leptons, photons, and **W** and **Z** bosons have no strong interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (guarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into additional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons qq and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual strong interactions between their color-charged constituents. It is similar to the residual elec-trical interaction that binds electrically neutral atoms to form molecules. It can also be viewed as the exchange of mesons between the hadrons.

ā i										Mesons qq		
	Broporty	Gravitational	Weak	Electromagnetic	Str	ong	Mesons are bosonic					
	roperty	Gravitational	(Electroweak)		Fundamental Residual		There are about 140 typ			types o		
in	Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note	Symbol	Name	Quark content	Electri charge		
2	Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons	π^+	nion	шā	.1		
-	Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons	" K-	pion	au au			
2	Strength relative to electromag 10 ⁻¹⁸ m	10 ⁻⁴¹	0.8	1	25	Not applicable	ĸ	kaon	su –	-1		
2	for two u quarks at: $\begin{cases} 3 \times 10^{-17} \text{ m} \end{cases}$	10 ⁻⁴¹	10-4	1	60	to quarks	ρ^+	rho	ud	+1		
2	for two protons in nucleus	10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20	B0	B-zero	db	0		

n→pe⁻ v_o

and an antineutrino via a virtual (mediating) W boson. This is neutron B decay.

structure of matter

Visit the award-winning web feature *The Particle Adventure* at http://ParticleAdventure.org Z0

111

hadrons

11.11

Z⁰

The Particle Adventure

This chart has been made possible by the generous support of: U.S. Department of Energy

U.S. National Science Foundation Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center American Physical Society, Division of Particles and Fields BURLE INDUSTRIES, INC.

 η_c

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-tion of teachers, physicists, and educators. Send mail to: CPEP. MS 50-308, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hands-on classroom activities, and workshops, see:

eta-c CC

http://CPEPweb.org

Standard Model of Electroweak and Strong Interactions

2. Electroweak fits

(Verzocchi ICHEP08)

 $m_{H} < 154 GeV$

4

Neutrino masses are really special!

- $m_t/(\Delta m_{atm}^2)^{1/2} \sim 10^{12}$
 - Massless v's?
 - no v_R
 - L conserved

Small v masses?

- v_R very heavy
- L not conserved

Running of the coupling constants

6

The Standard Model (Electroweak+QCD)

Precision EW measurements + Tests of SM at LEP, FNAL, SLAC, HERA failed to find discrepancies : **the SM is well off**.

QCD is the established theory of Strong Interactions.

The only missing basic ingredient in the SM is the Higgs. LHC may answer the following questions: Is there a Higgs? What is its mass? Is the Higgs a weak doublet? Is it elementary or composite?

Physics beyond the SM

- -There are many th reasons to search for physics beyond the SM (Infinities, SUSY, Dark Matter, Extra Dimensions,)
- -Are \boldsymbol{v} oscillations hints of new physics?

3. LHC +CERN accelerators

The CMS detector at the LHC

SPS Page 1

4. Neutrinos. Neutrino sources

Solar ν

Reactor ν

+ geo-antineutrinos

Atmospheric ν

Accelerator ν

v Oscillations (in vacuum)

Simple formulae modified by : Additional flavor oscillations Matter effects

In case of oscillations: $m_v \neq 0$, $\Delta m_v < 0.1 \text{ eV}$ L_e, L_u, L_τ violation, $L=L_e+L_\mu+L_\tau$ conserved? Neutrino decays? Lorentz invariance?

3 neutrino mixing (RZK-v08)

 $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ (flavor eigenstates) $\neq \nu_{1}, \nu_{2}, \nu_{3}$ (mass eigenstates)

$$\begin{pmatrix} \nu_{\mathbf{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad \qquad \mathbf{U} = \mathbf{V} \operatorname{diag}(\mathbf{1}, \mathbf{e}^{\mathbf{i}\alpha_{2}/2}, \mathbf{e}^{\mathbf{i}(\alpha_{3}+2\delta)/2})$$
Majorana CP violating Phases

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $\mathbf{C}_{ij} \equiv \cos \theta_{ij} \quad \mathbf{S}_{ij} \equiv \sin \theta_{ij} \quad \theta_{ij} \in [\mathbf{0}, \pi/\mathbf{2}] \quad \delta \in [\mathbf{0}, \mathbf{2}\pi] \quad \alpha_{i} \in [\mathbf{0}, \mathbf{2}\pi]$

Mass scales and hierarchies

Current experimental results imply:

$$\Delta m^2_{12} = \Delta m^2_{\odot} <<\!\! \Delta m^2_{
m atm} = \mid\!\! \Delta m^2_{32}\!\mid pprox \mid\!\! \Delta m^2_{31}\!\mid$$

Two possible hierarchies:

Mixing matrix

Do a more sofisticated evaluation [Gonzalez-Garcia and Maltoni, Phys. Rep. 460, 1 (2008)]

$$|V|_{3\sigma} = \begin{pmatrix} 0.77 - 0.86 & 0.50 - 0.63 & 0.00 - 0.22 \\ 0.22 - 0.56 & 0.44 - 0.73 & 0.57 - 0.80 \\ 0.21 - 0.55 & 0.40 - 0.71 & 0.59 - 0.82 \end{pmatrix}$$

Effects of ν_{μ} oscillations on upthroughgoing events

Flux reduction depending on zenith angle for the high energy events

MACRO : Final Combined Analysis

H.E. $\begin{cases} \text{Zenith distribution} \\ E_v \text{ estimate} \end{cases}$

 $R_1 = N(\cos \Theta < -0.7)/N(\cos \Theta > -0.4)$

 $R_2 = N(low E_v) / N(high E_v)$

L.E. IU, ID and UGS μ

 $R_3 = N(ID+UGS) / N(IU)$

 $\frac{\text{NO OSCILLATION HYPOTHESIS}}{\text{RULED OUT BY} \sim 5 \sigma}$

Best fit parameters for $v_{\mu} \rightarrow v_{\tau}$ $\Delta m_{23}^2 = 2.3 \ 10^{-3} \ eV^2$; $\sin^2 2\theta_{23} = 1$

Predictions of the new FLUKA and Honda Monte Carlos H.E. 25% low ; L.E. 12% low

Bartol96 may give additional evidence for oscillations: Absolute values referred to Bartol96 MC: $R_4=(Data/MC)_{H.E.}$; $R_5=(Data/MC)_{L.E.}$

With these informations, the no oscillation hypothesis ruled out by ~6 σ

Super-Kamiokande

Zenith Angle Distributions (SK-I + SK-II) ν_{μ} – ν_{τ} oscillation (best fit) SK-I + SK-II null oscillation **K-**|| 300 multi-ring µ-like Sub-GeV e-like Sub-GeV µ-like 200 multi-ring e-like 400 400 P<400MeV/c P<400MeV/c 150 300 300 200 100 200 200 100 50 100 100 0 ٥ 0 n 0.5 0 0.5 -0.5 Ω 0.5 -0.5 0 0.5 -0.5 0 5 600 Sub-GeV µ-like PC stop PC through Sub-GeV e-like Number of Events 300 400 00 14-14 P>400MeV/c P>400MeV/c 40 300 400 200 μ-like 200 20 200 100 100 e-like 0 C n -0.5 0.5 -0.5 0.5 -0.5 0 0.5 -0.5 0 0.5 0 0 1 -1 -1 600 150 Multi-GeV e-like Upward through-going Upward through-going Multi-GeV μ-like Upward stopping µ 150 non-showering µ 200 200 showering u 400 150 150 100 100 100 200 50 50 E 50 + 50 0 0 n 0 Λ -0.6 -0.4 -0.2 -0.5 n 0.5 -0.50 0.5 -1 -0.8 0 -1 -0.8 -0.6 -0.4 -0.2 0 -0.8 -0.6 -0.4 -0.2 0 -1 -1 cosΘ

SM. Neutrino oscillations

cosΘ

cosΘ

cosΘ

cosΘ

6. Long base line experiments

- K2K (KEK to Kamioka) (250 km) Near Detector and Far Detector (SuperK) Ratio=measured/expected <1 \rightarrow $\Delta m_{23}^2=2.7 \ 10^{-3} \text{ eV}^2$
- NuMI from Fermilab to Soudan mine (735 km) Experiment Minos Near Detector (1000 t), Far Detector (5500 t) Ratio=measured/expected < 1 $\rightarrow \Delta m_{23}^2$ =2.41 10⁻³ eV² Peanut test experiment
- CNGS beam from CERN to Gran Sasso (732 km) Experiments: Opera: Appearance v_{μ} --> v_{τ} experiment LVD monitor, Borexino, Icarus Neutrino Beam size at GS : σ about 1 km

Time Selection of Beam Events

GPS Time Stamp resolution ~ 100 ns

CNGS: the main components

NuMI - MINOS

Far Detector: Soudan, Minnesota, 735 km from target 5.4 kton mass 484 steel/scintillator planes, 8x8x30 m³

Near Detector: Fermilab, 1km from target 1 kton mass 282 steel planes 153 scintillator planes, 3.8x4.8x15 m³

Structure of the OPERA Experiment

OPERA Hybrid concept

Target is an assemblage of autonomous cells ("bricks")

- based on "Emulsion Cloud Chamber" technique
- provides large mass and micron and mrad precisions
- quasi on-line analysis: bricks in which events have occurred are removed and analysed on daily base.

Brick

 56 lead plates interleaved with 57 sheets of nuclear emulsion

• 4"×5"×7.5 cm, 8.3 kg.

•10 X₀

Tracks : series of aligned segments in emulsion layers

A muon in the electronic detectors

The same muon in emulsions

One event seen in 2007

7. Conclusions. Outlook

Atmospheric neutrino and long baseline favor 2-flavor oscillations

More exotic scenarios:

- Lorentz invariance violation : mixing between flavor and velocity eigenstates (MACRO, SK,...)
- neutrino radiative decay, others

Appearance experiments ν_{μ} \rightarrow ν_{τ} (OPERA, SK, ICARUS,...)

Solar neutrinos

Experiments : Homestake, Kamiokande, Sage, Gallex, Superkamiokande, SNO, Kamland, Borexino $\Delta m_{12}^2 = 7.5 \ 10^{-5} \ eV^2$ $tg^2\theta_{12} = 0.47$

... and next

0.03

_ _

 T2K and Nova – "Off-Axis" Trick 100 50 0 2 3 0 ${\bm P}_{\nu, {\sf T}}$ GeV/c 0.03

SM. Neutrino oscillations

35

 $\mathbf{P}_{v,L}$

GēV/c

4 5 E_v (GeV)